1.

Find the sum of the series1 + (1 + x) + (1 + x + x2) + (1 + x + x2 + x3) + ⋯

Answer»

Let

Sn = 1 + (1 + x) + (1 + x + x2) + (1 + x + x2 + x3 ) + ⋯

to n terms

Hence, (1 + x) Sn = (1 + x) + (1 − x)(1 + x)

+ (1 − x) + (1 + x + x2)

+ (1 − x) + (1 + x + x2 + x3) + ⋯

to n terms

or (1 − x) Sn = (1 − x) + (1 − x2) + (1 − x3)

to n terms + (1 − x4) + ⋯

= n − (x + x2 + x3 + x4 + ⋯ ) to n terms

= n − \(\frac{x(1 − x^n)}{(1 − x)}\)

Hence, Sn = \(\frac{n}{1-x}\)\(\frac{x(1 − x^n)}{(1 − x)^2}\)



Discussion

No Comment Found