1.

Find the value of 'a' and 'b' if \(\lim\limits_{x \to 2}f(x)\) and \(\lim\limits_{x \to 4}f(x)\)exists where.\(f(x) = \begin{cases} x^2+as+b & \quad \text, 0\leq{x} <{2}\\ 3x+2, & \quad \text, 2\leq{x}\leq{4}\\2ax+5b & \quad \text,4<x\leq{8} \end{cases} \)

Answer»

Given,

\(f(x) = \begin{cases} x^2+as+b & \quad \text, 0\leq{x} <{2}\\ 3x+2, & \quad \text, 2\leq{x}\leq{4}\\2ax+5b & \quad \text,4<x\leq{8} \end{cases} \) 

To find  \(\lim\limits_{x \to 2}f(x)\)

L.H.L

\(=\lim\limits_{x \to 2^-}f(x)\) 

\(=\lim\limits_{x \to 2^-}(x^2+ax+b)\) 

= 2+ a∙2 + b 

= 2a + b + 4

And,

R.H.L

\(=\lim\limits_{x \to 2^+}f(x)\)

\(=\lim\limits_{x \to 2^+}(3x+2)\) 

= 3 ∙ 2 + 2 = 8

Since \(\lim\limits_{x \to 2}f(x) \) exists,

∴ \(\lim\limits_{x \to 2^-}f(x)\) \(=\lim\limits_{x \to 2^+}f(x)\)

⇒ 2a + b + 4 = 8

⇒ 2a + b = 4 … (1)

To find  \(\lim\limits_{x \to 2}f(x)\).

L.H.L

\(=\lim\limits_{x \to 4^-}f(x)\)

\(=\lim\limits_{x \to 4^-}(3x+2)\) 

= 3 ∙ 4 + 2 = 14

And

R.H.L

\(=\lim\limits_{x \to 4^+}f(x)\)

\(=\lim\limits_{x \to 4^+}(2ax+5b)\) 

= 2a. 4 + 5b 

= 8a + 5b

Since \(\lim\limits_{x \to 4}f(x) \) exists.

∴ \(\lim\limits_{x \to 4^-}f(x) \) = \(\lim\limits_{x \to 4^+}f(x) \)

⇒ 8a + 5b = 14 … (2)

From (1) and (2),

a = 3 and b = -2.



Discussion

No Comment Found