InterviewSolution
| 1. |
Find the value of \({\cos ^{ - 1}}\frac{4}{5} - {\cos ^{ - 1}}\frac{{15}}{{17}}\).1. \({\cos ^{ - 1}}\frac{{13}}{{64}}\)2. \({\tan ^{ - 1}}\frac{{13}}{{84}}\)3. \({\sin ^{ - 1}}\frac{{13}}{{64}}\)4. 0 |
|
Answer» Correct Answer - Option 2 : \({\tan ^{ - 1}}\frac{{13}}{{84}}\) Concept: \({\cos ^{ - 1}}\left( {\sqrt {1 - {x^2}} } \right) = {\tan ^{ - 1}}\left( {\frac{x}{{\sqrt {1 - {x^2}} }}} \right)\) \({\tan ^{ - 1}}x - {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\frac{{x - y}}{{1 + xy}}} \right)\) Calculation: As we know, \({\cos ^{ - 1}}\left( {\sqrt {1 - {x^2}} } \right) = {\tan ^{ - 1}}\left( {\frac{x}{{\sqrt {1 - {x^2}} }}} \right)\) ⇒ \({\cos ^{ - 1}}\frac{4}{5} = {\tan ^{ - 1}}\frac{3}{4}\;\ and\ {\cos ^{ - 1}}\frac{{15}}{{17}} = {\tan ^{ - 1}}\frac{8}{{15}}\) The expression \({\cos ^{ - 1}}\frac{4}{5} - {\cos ^{ - 1}}\frac{{15}}{{17}}\) can be rewritten as follows: \({\cos ^{ - 1}}\frac{4}{5} - {\cos ^{ - 1}}\frac{{15}}{{17}} = {\tan ^{ - 1}}\frac{3}{4} - {\tan ^{ - 1}}\frac{8}{{15}}\) As we know that, \({\tan ^{ - 1}}x - {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\frac{{x - y}}{{1 + xy}}} \right)\) \({\tan ^{ - 1}}\frac{3}{4} - {\tan ^{ - 1}}\frac{8}{{15}} = {\tan ^{ - 1}}\left( {\frac{{\frac{3}{4} - \frac{8}{{15}}}}{{1 + \frac{2}{5}}}} \right)\) \(= {\tan ^{ - 1}}\left( {\frac{{13}}{{84}}} \right)\) |
|