1.

If A, B and C is three angles of a ΔABC, whose area is Δ. Let a, b and c be the sides opposite to the angles A, B and C respectively. If \(s=\dfrac{a+b+c}{2}=6\), then the product \(\dfrac{1}{3}s^2 (s-a)(s-b)(s-c)\) is equal to  1. 2Δ 2. 2Δ23. \(\sqrt{2}\Delta\)4. Δ2

Answer» Correct Answer - Option 2 : 2Δ2

Concept:

The area of any triangle can be defined as:

A = \(\rm \sqrt{s(s-a)(s-b)(s-c)}\) 

where a, b and c are the sides of the triangle and \(\rm s=\dfrac{a+b+c}{2}\) 

Calculation:

Given \(\rm s=\dfrac{a+b+c}{2}=6\)

Area of the triangle = \(\rm \sqrt{s(s-a)(s-b)(s-c)}\) = Δ

⇒ s(s - a)(s - b)(s - c) = Δ2

Multiplying both side by s 

⇒ s × s(s - a)(s - b)(s - c) = s × Δ2

⇒ s2(s - a)(s - b)(s - c) = 6 Δ2

Multiplying both side by \(\rm 1\over 3\)

\(\boldsymbol{\rm 1\over 3}\) s2(s - a)(s - b)(s - c) = 2 Δ2



Discussion

No Comment Found

Related InterviewSolutions