1.

Find the value of k for the system of equations having infinitely many solution:2x – 3y = 7 (k+2)x – (2k+1)y = 3(2k-1)

Answer»

The given system of equations is: 

2x – 3y – 7 = 0 

(k+2)x – (2k+1)y – 3(2k-1) = 0 

The above equations are of the form 

a1 x + b1 y − c1 = 0 

a2 x + b2 y − c2 = 0 

Here, a1 = 2, b1 = -3, c1 = -7 

a2 = (k+2), b2 = -(2k+1), c2 = -3(2k-1) 

So according to the question, 

For unique solution, the condition is 

\(\frac{a_1 }{ a_2} = \frac{b_1 }{ b_2} = \frac{c_1}{ c_2}\) 

\(\frac{2}{(k+2)}\) = \(\frac{−3}{ −(2k+1)}\) = \(\frac{−7}{−3(2k−1)}\) 

\(\frac{2}{(k+2)}\) = \(\frac{−3}{ −(2k+1)}\) and \(\frac{−3}{ −(2k+1)}\) = \(\frac{−7}{−3(2k−1)}\) 

⇒ 2(2k+1) = 3(k+2) and 3 x 3(2k−1) = 7(2k+1) 

⇒ 4k + 2 = 3k + 6 and 18k – 9 = 14k + 7 

⇒ k = 4 and 4k = 16 

⇒ k = 4

Hence, the given system of equations will have infinitely many solutions, if k = 4.



Discussion

No Comment Found