InterviewSolution
Saved Bookmarks
| 1. |
Find the value of `k`for which the quadratic equation`(k+4)x^2+(k+1)x+1=0` |
|
Answer» The given equation is `(k+4)x^(2)+(k+1)x+1=0.` This is of the form `ax^(2)+bx+c=0,` where `a=(k+4), b=(k+1)" and "c=1.` `:." "D=(b^(2)-4ac)=(k+1)^(2)-4xx(k+4)xx1=(k+1)^(2)-4(k+4)` `=(k^(2)+1+2k-4k-16)=(k^(2)-2k-15).` For equal roots, we must have `D=0impliesk^(2)-2k-15=0` `implies" "k^(2)-5k+3k-15=0impliesk(k-5)+3(k-5)=0` `implies" "(k-5)(k+3)=0impliesk-5=0" or "k+3=0` `implies" "k=5" or "k=-3.` Hence, the required value of k is or -3. |
|