Saved Bookmarks
| 1. |
Find the value of p so that the lines (11 - x)p = (3y - 3)/2 = (17 - z)/5 and (x - 22)/3p = (2y - 7)/27p = (z - 100)/(6/5). |
|
Answer» Given the equation, (11 - x)/p = (3y - 3)/2 = (17 - 2)/5 ...(i) (x - 11)/-p = (y - 1)/(2/3) = (2 - 17)/-5 (Middle term dividing numerator denominator by 3) Again linear equation, (x - 22)/3p = (2y - 7)/(2 + p) = (2 - 100)/(6/5) (x - 22)/3p = (y - (7/2))/((2 + p)/2) = ((2 - 100)/(6/5) ...(ii) line (i) and (ii) perpendicular if a1a2 + b1b2 + c1c2 = 0 -p(3p) + (2/3) x (27p/2) + (-5 x (6/5)) = 0 -3p2 + 9p - 6 = 0 3p2 - 9p + 6 = 0 (take sign common) 3p2 - 6p - 3p + 6 = 0 3p(p - 2) - 3(p - 2) = 0 (p - 2) (3p - 3) = 0 when p - 2 = 0 then p = 2 when 3p - 3 = 0 then 3p = 3 p = 3/3 = 1 p = 1 ∴ p = 1, 2 |
|