InterviewSolution
Saved Bookmarks
| 1. |
Find the value of (Sigma_(r=1)^(n) 1/r)/(Sigma_(r=1)^(n) k/((2n-2k+1)(2n-k+1))). |
|
Answer» SOLUTION :LET `A=sum_(K=1)^(n)k/((2n-2k+1)(2n-k+1))` `=sum_(k=1)^(n)((2n-k+1)-(2n-2k+1))/((2n-2k+1)(2n-k+1))` `sum_(k=1)^(n)1/(2n-2k+1)-sum_(k=1)^(n)1/(2n-k+1)` `=(1/1+1/3+1/5+..+1/(2n-1))-(1/(n+1)+1/(n+2)+..+1/(2n))` and `B=sum_(r=1)^(n)1/r=1/1+1/2+1/3+...+1/n+1/(n+1)+1/(n+2)+..+1/(2n))-(1/1+1/3+1/5+..+1/(2n-1))` `=1/2+1/4+1/6+...1/(2n)` `=1/2(1/1+1/2+1/3+..+1/n)` `=B/2` So, `B-A=1/2B` `rArrB/2=A` `rArrB/A=2` |
|