

InterviewSolution
Saved Bookmarks
1. |
Find the value of `x^(2)` for the following values of x: (a) `[-5,-1] " (b) "(3,6) " (c ) "(-2,3]` (d) `(-3,oo) " (e ) "(-oo,4)` |
Answer» Correct Answer - (a) `[1,5] " (b) "(9,36)" (c ) " [0,9] " (d) " [0, oo) " (e ) "[0, oo)` (a) `-5 le x le -1` `implies x^(2) in [1,5]` (b) `3 lt x lt 6` (c ) `-2 lt x le 3` `implies -2 lt x le 3` For `-2 lt x lt 0, x^(2) in (0,4) " (1)" ` and for `0 le x le 3, x^(2) in [0,9] " (2) ` From (1) and (2), `x^(2) in [0,9] ` Alternatively, ` x in (-2,3],` now least value of `x^(2)` is 0 which occurs when `x=0` Greatest value of `x^(2)` is 9 for `x=3` `implies x^(2) in [0,9]` (d) `(-3,oo)` Here least value of `x^(2)` is 0 for `x = 0`, and when x goes up to infinity, `x^(2)` also goes up to infinity `implies x^(2) in [0,oo)` (e) `(-oo,4)` Here least value of `x^(2)` is 0 for `x = 0` and `x^(2) to oo`, when `x to -oo` Hence, `x^(2) in [0,oo)` |
|