1.

Find the values of a and b if A = B, where \(A=\begin{bmatrix} a+4& 3b \\[0.3em] 8 & -6 \\[0.3em] \end{bmatrix},\)\(B=\begin{bmatrix} 2a+2&b^2+2 \\[0.3em] 8 & b^2-10 \\[0.3em] \end{bmatrix} ​​\) 

Answer»

Given two matrices are equal.

i.e, A = B.

 \(\begin{bmatrix} a+4& 3b \\[0.3em] 8 & -6 \\[0.3em] \end{bmatrix}\)\(=\begin{bmatrix} 2a+2&b^2+2 \\[0.3em] 8 & b^2-10 \\[0.3em] \end{bmatrix} ​​\) 

We know that if two matrices are equal then the elements of each matrices are also equal.

∴ a + 4 = 2a + 2 

⇒ a – 2a = 2 – 4 

⇒ – a = – 2 

⇒ a = 2 … (1) 

And 3b = b2 + 2 

⇒ b2 – 3b + 2 = 0 

⇒ b2 – 2b – b + 2 = 0 

⇒ b(b – 2) – 1(b – 2) = 0 

⇒ (b – 2)(b – 1) = 0 

⇒ b = 2 or 1 … (2) 

And – 6 = b2 – 10 

⇒ b2 = – 10 + 6 

⇒ b2 = – 4 

⇒ b = ±2i

(No real solution)  … (3) 

∴ a = 2, b = 2 or 1



Discussion

No Comment Found

Related InterviewSolutions