InterviewSolution
Saved Bookmarks
| 1. |
Find the values of a and b if A = B, where \(A=\begin{bmatrix} a+4& 3b \\[0.3em] 8 & -6 \\[0.3em] \end{bmatrix},\)\(B=\begin{bmatrix} 2a+2&b^2+2 \\[0.3em] 8 & b^2-10 \\[0.3em] \end{bmatrix} \) |
|
Answer» Given two matrices are equal. i.e, A = B. \(\begin{bmatrix} a+4& 3b \\[0.3em] 8 & -6 \\[0.3em] \end{bmatrix}\)\(=\begin{bmatrix} 2a+2&b^2+2 \\[0.3em] 8 & b^2-10 \\[0.3em] \end{bmatrix} \) We know that if two matrices are equal then the elements of each matrices are also equal. ∴ a + 4 = 2a + 2 ⇒ a – 2a = 2 – 4 ⇒ – a = – 2 ⇒ a = 2 … (1) And 3b = b2 + 2 ⇒ b2 – 3b + 2 = 0 ⇒ b2 – 2b – b + 2 = 0 ⇒ b(b – 2) – 1(b – 2) = 0 ⇒ (b – 2)(b – 1) = 0 ⇒ b = 2 or 1 … (2) And – 6 = b2 – 10 ⇒ b2 = – 10 + 6 ⇒ b2 = – 4 ⇒ b = ±2i (No real solution) … (3) ∴ a = 2, b = 2 or 1 |
|