 
                 
                InterviewSolution
| 1. | Find the values of each of the following:(i) \((\frac{1}{2})^{-1}+(\frac{1}{3})^{-1}+(\frac{1}{4})^{-1}\)(ii) \((\frac{1}{2})^{-2}+(\frac{1}{3})^{-2}+(\frac{1}{4})^{-2}\)(iii) \((2^{-1}\times 4^{-1})÷2^{-2} \)(iv) \((5^{-1}\times 2^{-1})÷6^{-1} \) | 
| Answer» (i) \((\frac{1}{2})^{-1}+(\frac{1}{3})^{-1}+(\frac{1}{4})^{-1}\) ⇒ (2)+(3)+(4)[Using \(a^{-n}=\frac{1}{a^{n}}\)] ⇒ 2+3+4 = 9 (ii) \((\frac{1}{2})^{-2}+(\frac{1}{3})^{-2}+(\frac{1}{4})^{-2}\) ⇒ \((2^{2})+(3^{2})+(4^{2})\)[Using \(a^{-n}=\frac{1}{a^{n}}\);\(a^{2}=a\times a\)] ⇒ 4+9+16 = 29 (iii) \((2^{-1}\times 4^{-1})÷2^{2}\) ⇒ \((\frac{1}{2}\times \frac{1}{4})÷(\frac{1}{2^{2}})\)[Using \(a^{-n}=\frac{1}{a^{n}}\)and \(\frac{1}{a}\div \frac{1}{b}\) = \(\frac{1}{a}\times \frac{b}{1}\)] ⇒ \((\frac{1\times 1}{2\times 4})\times 2^{2}\)[Using \(\frac{1}{a}\times \frac{b}{1}\)= \(\frac{1}{ab}\);\(a^{2}=a\times a\)] ⇒ \(\frac{1}{8}\times 4\) = \(\frac{1}{2}\) (iv) \((5^{-1}\times 2^{-1})÷6^{-1}\) ⇒ \((\frac{1}{5}\times \frac{1}{2})÷(\frac{1}{6})\)[Using \(a^{-n}=\frac{1}{a^{n}}\)and \(\frac{1}{a}\div \frac{1}{b}\) = \(\frac{1}{a}\times \frac{b}{1}\)] ⇒ \((\frac{1\times 1}{5\times 2})\times (\frac{6}{1})\)[Using \(\frac{1}{a}\times \frac{b}{1}\)= \(\frac{1}{ab}\)] ⇒ \(\frac{1}{10}\times 6\) = \(\frac{6}{10}\) = \(\frac{3}{5}\) | |