1.

Find the values of k for roots are real and equal in equation:(k + 1)x2 + 2(k + 3)x + (k + 8) = 0

Answer»

The given equation (k +1)x+ 2(k +3)x + (k +8) = 0 is in the form of ax+ bx + c = 0

Where a = (k +1), b = 2(k + 3), c = (k + 8)

For the equation to have real and equal roots, the condition is

D = b– 4ac = 0

⇒ (2(k + 3))– 4(k +1)(k + 8) = 0

⇒ 4(k +3)– 4(k2 + 9k + 8) = 0

⇒ (k + 3)– (k2 + 9k + 8) = 0

⇒ k+6k + 9 – k2 – 9k – 8 = 0

⇒ -3k + 1 = 0

⇒ k = \(\frac{1}{3}\)

So, the value of k is \(\frac{1}{3}\).



Discussion

No Comment Found