1.

Find the values of k for roots are real and equal in equation:kx2 + kx + 1 = – 4x2 – x

Answer»

The given equation kx+ kx + 1 = -4x– x

This can be rewritten as,

(k + 4)x2 + (k + 1)x + 1 = 0

Now, this in the form of ax+ bx + c = 0

Where a = (k +4), b = (k + 1), c = 1

For the equation to have real and equal roots, the condition is

D = b– 4ac = 0

⇒ (k + 1)– 4(k +4)(1) = 0

⇒ (k +1)– 4k – 16 = 0

⇒ k2 + 2k + 1 – 4k – 16 = 0

⇒ k– 2k – 15 = 0

Now, solving for k by factorization we have

⇒ k– 5k + 3k – 15 = 0

⇒ k(k – 5) + 3(k – 5) = 0

⇒ (k + 3)(k – 5) = 0,

k = -3 and k = 5,

So, the value of k can either be -3 or 5.



Discussion

No Comment Found