1.

Find the values of ‘m’ for which x2 + 3xy + x + my – m has two linear factors in x and y, with integer coefficients.

Answer»

Given equation is x2 + 3xy + x + my – m ……….(1)

Let the two linear equations in x and y be (x + 3y + a) and (x + 0y + b).

Then (x + 3y + a) (x + 0y + b)

= x2 + 0xy + bx + 3xy + 0y2 + 3by + ax + 0y + ab

= x2 + bx + ax + 3xy + 3by + ab ………….. (2)

Comparing equation (2) with (1),

x2 + 3xy + x + my – m = x2 + (a + b)x + 3xy + 3by + ab

Equating the like terms on both sides,

ab = – m ………….. (3)

(a + b)x = x 

⇒ a + b = 1…………. (4)

3by = my ⇒ 3b = m ⇒ b = m/3

Substitute ‘b’ value in equation (4),

a = 1−m/3 = (3 − m)/3

ab = -m

[ ∵ from (3)]

put a & b value then ,

((3−m)/3)(m/3) = -m

(3m − m2)/9 = -m

⇒ 3m – m2 = – 9m

⇒ m2 – 12m = 0

⇒ m(m – 12) = 0

⇒ m = 0 (or) m = 12

lf m = 12

∴ b = 12/3 = 4&a = (3−m)/3 = (3−12)/3

= −9/3 = -3

∴ Linear factors are (x + 3y – 3), (x + 4)  If m = 0

b = 0/3 = 0 & a = (3−0)/3 = 3/3 = 1

∴ Linear factors are (x + 3y + 1), x.



Discussion

No Comment Found