InterviewSolution
| 1. |
Find the values of ‘m’ for which x2 + 3xy + x + my – m has two linear factors in x and y, with integer coefficients. |
|
Answer» Given equation is x2 + 3xy + x + my – m ……….(1) Let the two linear equations in x and y be (x + 3y + a) and (x + 0y + b). Then (x + 3y + a) (x + 0y + b) = x2 + 0xy + bx + 3xy + 0y2 + 3by + ax + 0y + ab = x2 + bx + ax + 3xy + 3by + ab ………….. (2) Comparing equation (2) with (1), x2 + 3xy + x + my – m = x2 + (a + b)x + 3xy + 3by + ab Equating the like terms on both sides, ab = – m ………….. (3) (a + b)x = x ⇒ a + b = 1…………. (4) 3by = my ⇒ 3b = m ⇒ b = m/3 Substitute ‘b’ value in equation (4), a = 1−m/3 = (3 − m)/3 ab = -m [ ∵ from (3)] put a & b value then , ((3−m)/3)(m/3) = -m (3m − m2)/9 = -m ⇒ 3m – m2 = – 9m ⇒ m2 – 12m = 0 ⇒ m(m – 12) = 0 ⇒ m = 0 (or) m = 12 lf m = 12 ∴ b = 12/3 = 4&a = (3−m)/3 = (3−12)/3 = −9/3 = -3 ∴ Linear factors are (x + 3y – 3), (x + 4) If m = 0 b = 0/3 = 0 & a = (3−0)/3 = 3/3 = 1 ∴ Linear factors are (x + 3y + 1), x. |
|