

InterviewSolution
1. |
Find the values of the unknowns ‘x ‘and y in the following diagrams.i)ii)iii)iv)v)vi) |
Answer» i) In ΔPQR x° + 50° = 120° (exterior angle property) x°= 120°- 50° x°= 70° Also ∠P + ∠Q +∠R = 180° (angle – sum property) 70° + 50° + y° = 180° 120° + y° = 180° y° = 180° – 120° y° = 60° (OR) y° + 120° = 1800 (linear pair of angles) y° = 180°- 120° ∴ y° = 60° ii) In the figure ΔRST, x° = 80° (vertically opposite angles) also ∠R + ∠S + ∠T = 180° (angle – sum property) 80° + 50°+ y°= 180° 130° + y° = 180° y° = 180° – 130° ∴ y° = 50° iii) m ΔMAN, x° = ∠M + ∠A (exterior angle property) x° = 50° + 60° x° = 110° Also x° + y° = 180° 110°+ y°= 180° y° = 180° – 110° y° = 70° (OR) in ΔMAN, ∠M + ∠A + ∠N = 180° (angle – sum property ) 50° + 60° + y° = 180° 110° + y° = 180° y° = 180°- 110° ∴ y° = 70° v) In the figure ΔABC, x° = 60° (vertically opposite angles) ∠A + ∠B + ∠ACB = 180° (angle – sum property) y° + 30° + 60° = 180° y° + 90° = 180° y° = 180° – 90° ∴ y° = 90° v) In the figure ΔEFG, y° = 90° (vertically opposite angles) Also in ΔEFG; ∠F + ∠E + ∠G = 180° (angle – sum property) ∴ x° + x° + y° = 180 2x° + 90° = 180° 2x° = 180°- 90° 2x° = 90° x° = 90°/2 ∴ x° = 45° vi) In the figure ΔLET, ∠L = ∠T = ∠E = x° (vertically opposite angles) Also in ΔLET ∠L + ∠E + ∠T = 180° (angle – sum property) x° + x° + x° = 180° 3x° = 180° x° = 180°/3 x° = 60° |
|