InterviewSolution
Saved Bookmarks
| 1. |
Find the vector and cartesiooan equations of the plane passing through the points `A(1,1-2),B(1,2,1),C (2,-1,1)` |
|
Answer» Let `bara, barb, barc`, the p.v. of the points `A(1,1,-2) B (1,2,1),C(2,-1,1)` respectively. `:. Bara=hati+hatj-2hatk` `barb=hatj+2hatj+hatk` `bar=2hati+hatj+hatk` `:. Bar(AB)= barb-barb=(2hati-hatj+hatk)-(hati+hatj-2hatk)` `hatj+3hatk` `bar(AC)=barc-bara=(2hati-hatj+hatk)-(ahti+hatj-2hatk)` `= hati-2hatj+3hatk` `:. bar(AB)xxbar(AC)=|{:(hati,hatj,hatk),(0,1,3),(1,-2,3):}|` `= hati(3+6)-hatj(-3)+hatk(-1)` `=9hati+3hatj-hatk` The vector equation of the plane passing through the given points is `bar r (bar (AB)xxbar(AC)=bara(bar(AB)xxbar(AC))` `:. barr (9hati+3hatj-hatk)=(hati+hatj-2hatk)(9hati+3hatj-hatk)` `:. vec r (9hati+3hatj-hatk)=9+3+2` ` bar r(9hati+3hatj-hatk)=14 " " ....(1)` For cartesian form, Putting `bar=xhati+yhatj+zhat` in (1), we get `(x hati+yhati+zhatk)(9hati+3hatj-hatk)=14` `:. 9x+3y-z=14` `:.` Required cartesian form of the euquation of the plane is `9x+3y-z=14` |
|