

InterviewSolution
Saved Bookmarks
1. |
Find the vector equation of a plane passing through the intersection of the planes `vecr.(hati+hatj+hatk) = 6` and `vecr. (2hati+3hatj+4hatk) - 5 = 0` and through the point `(2,2,1)`. |
Answer» Let the equation of the plane through the intersection of given planes is `[vecr.(hati+hatj+hatk)-6]` `+lambda[vecr.(2hati+3hatj+4hatk)-5] = 0` `rArr vecr.[(1+2lambda)hati+(1+3lambda)hatj` `+(1+4lambda)hatk]=6+5lambda` It passes through the point `(2,2,1)` i.e., `(2hati+2hatj+hatk)` `:. (hati+2hatj+hatk),[(1+2lambda)hati+(1+3lambda)hatj` `+(1+4lambda)hatk] = 6+5lambda` `rArr 2(1+2lambda)+2(1+3lambda)+(1+4lambda)=6+5lambda` `rArr 2 + 4 lambda + 2 + 6 lambda+1 + 4lambda= 6 +5lambda` `rArr 9lambda = 1` `rArr lambda = 1/9` Therefore the eqation of the plane is `vecr.[(1+2/9)hati+(1+3/9)hatj+(1+4/9)hatk] = 6+5/9` `rArr vecr.(11hati+12hatj+13hatk) = 59`. |
|