1.

Find the vector equation of the plane passing through the intersection of the planes and through the point (2,1,3).

Answer»

Let the planes be 

P1 : 2x + 2y -3z – 7 = 0, 

P2 : 2x +5y + 3z = 9 

∴ Required equation be P1+ λ P2 = 0 

(2x + 2y – 3z – 7) + λ(2x + 5y + 3z – 9) = 0, 

passes through 

(2, 1, 3) (4 + 2 – 9 – 7) + λ(4 + 5 + 9 – 9) = 0

- 10 + λ9 = 0  ⇒ λ = \(\frac{10}{9}\)

Required plane is 

(2x + 2y – 3z – 7) + λ(2x + 5y + 3z – 9) = 0 

18x + 18y -27z – 63 + 20x + 50y + 50z – 90 = 0 

38x + 68y + 3z – 153 = 0



Discussion

No Comment Found