1.

Find the weight of water supported by surface tension in a capillary tube with a radius of 0.2mm. Surface tension of water is 0.072Nm^(-1) and angle of contact of water is 0^(@)

Answer» <html><body><p></p>Solution :Assume the weight of <a href="https://interviewquestions.tuteehub.com/tag/water-1449333" style="font-weight:bold;" target="_blank" title="Click to know more about WATER">WATER</a> to be .F. <br/> weight of water in capillary tube = upward force due to surface tension <br/> i.e., `F=2pir(Scostheta)` <br/> Surface tension of water `S=0.072Nm^(-1)` <br/> <a href="https://interviewquestions.tuteehub.com/tag/angle-875388" style="font-weight:bold;" target="_blank" title="Click to know more about ANGLE">ANGLE</a> of contact`theta=0^(@)` <br/> <a href="https://interviewquestions.tuteehub.com/tag/radius-1176229" style="font-weight:bold;" target="_blank" title="Click to know more about RADIUS">RADIUS</a> of capillary tube `(r)=(0.2)/(1000)m=0.2xx10^(-3)m` <br/> `F=2pir(Scostheta)=2xx(22)/(7)xx0.2xx10^(-3)xx0.072xx1` <br/> `=90.51xx10^(-<a href="https://interviewquestions.tuteehub.com/tag/6-327005" style="font-weight:bold;" target="_blank" title="Click to know more about 6">6</a>)NimpliesF=90.51xx10^(-6)N`</body></html>


Discussion

No Comment Found