1.

Find the zeroes of the quadratic polynomial 4x2 ˗ 4x + 1 and verify the relation between the zeroes and the coefficients.

Answer»

4x2 ˗ 4x + 1 = 0 

⇒ (2x)2 ˗ 2(2x)(1) + (1)2 = 0

⇒ (2x ˗ 1)2 = 0 [∵ a2 – 2ab + b2 = (a–b)2]

⇒ (2x ˗ 1)2 = 0

⇒ x = \(\frac{1}2\) or x = \(\frac{1}2\)

Sum of zeroes = \(\frac{1}2\) + \(\frac{1}2\) = 1 = \(\frac{1}1\) = \(\frac{-(coefficient\,of\,x)}{(coefficient\,of\,x^2)}\)

Product of zeroes = \(\frac{1}2\) x \(\frac{1}2\) = \(\frac{1}4\) = \(\frac{constant\,term}{(coefficient\,of\,x^2)}\)



Discussion

No Comment Found