1.

Find the zeros of quadratic polynomials and verify the relationship between the zeros and their coefficients:f(v) = v2 + 4√3v – 15

Answer»

Given, 

f(v) = v2 + 4√3v – 15 

We put f(v) = 0 

⇒ v2 + 4√3v – 15 = 0 

⇒  v2 + 5√3v – √3v – 15 = 0 

⇒ v(v + 5√3) – √3 (v + 5√3) = 0 

⇒ (v – √3)(v + 5√3) = 0 

This gives us 2 zeros, for 

v = √3 and v = -5√3 

Hence, the zeros of the quadratic equation are √3 and -5√3. 

Now, for verification 

Sum of zeros = – coefficient of v / coefficient of v2 

√3 + (-5√3) = – (4√3) / 1 

-4√3 = -4√3 

Product of roots = constant / coefficient of v2 

√3 x (-5√3) = (-15) / 1 

-5 x 3 = -15 

-15 = -15 

Therefore, the relationship between zeros and their coefficients is verified.



Discussion

No Comment Found