1.

Find the zeros of quadratic polynomials and verify the relationship between the zeros and their coefficients:p(y) = y2 + (3√5/2)y – 5

Answer»

Given, 

p(y) = y2 + (3√5/2)y – 5 

We put f(v) = 0 

⇒ y2 + (3√5/2)y – 5 = 0 

⇒  y2 – √5/2 y + 2√5y – 5 = 0 

⇒ y(y – √5/2) + 2√5 (y – √5/2) = 0 

⇒ (y + 2√5)(y – √5/2) = 0 

This gives us 2 zeros, for 

y = √5/2 and y = -2√5 

Hence, the zeros of the quadratic equation are √5/2 and -2√5. 

Now, for verification 

Sum of zeros = – coefficient of y / coefficient of y2 

√5/2 + (-2√5) = – (3√5/2) / 1 

-3√5/2 = -3√5/2 

Product of roots = constant / coefficient of y2 

√5/2 x (-2√5) = (-5) / 1 

– (√5)2 = -5 

-5 = -5 

Therefore, the relationship between zeros and their coefficients is verified.



Discussion

No Comment Found