1.

Find underset(n to oo)lim x_(n) if (a) x_(n=sqrt(2n+3)-sqrt(n-1) (b) x_(n)=sqrt(n^(2)+n+1)-sqrt(n^(2)-n+1), (c) x_(n)=n^(2) (n-sqrt(n^(2)+1)) (d) x_(n)=root3(n^(2)-n^(3))+pi (e) x_(n)=(sqrt(n^(2)+1)+sqrtn)/(root5(n^(3)+n-sqrtn) (f) x_(n)=root(n+1)^(2)-root3(n-1)^(2), (g) x_(n)=(1-2+3-4+5-6+...-2n)/(sqrt(n^(2)+!)+sqrt(4n^(2)-1)) (g) x_(n)=1/(1.2)+1/(2.3)+(1)/(3.4)+.....+(1)/(n(n+10)

Answer»


ANSWER :(B) 1; (F) 0


Discussion

No Comment Found

Related InterviewSolutions