InterviewSolution
Saved Bookmarks
| 1. |
For 4x2 - 18x + 20 = 0, find a3 + b3 where a and b are the roots of the equation.1. 20.6252. 12.6253. 23.6254. Insufficient Data |
|
Answer» Correct Answer - Option 3 : 23.625 Concept: For an equation ax2 + bx +c = 0
The roots of a quadratic equation ax2 +bx + c = 0 are real if: b2 - 4ac ≥ 0 Calculation: For a and b are the roots of 4x2 - 18x + 20 = 0 then, a + b = \(\rm 18\over 4\) = 4.5 ab = \(\rm 20\over 4\) = 5 (a + b)2 = a2 + b2 + 2ab ⇒ 4.5 × 4.5 = a2 + b2 + 2(5) ⇒ a2 + b2 = 20.25 - 10 ⇒ a2 + b2 = 10.25 Now a3 + b3 = (a + b)(a2 + b2 - ab) ⇒ a3 + b3 = (4.5)(10.25 - 5) ⇒ a3 + b3 = (4.5) × (5.25) ⇒ a3 + b3 = 23.625 |
|