1.

For all a, b ∈ R, we define a * b = |a – b|. Show that * is commutative but not associative.

Answer»

a*b = a - b if a>b 

= - (a - b) if b>a 

b*a = a - b if a>b 

= - (a - b) if b>a 

So a*b = b*a 

So * is commutative 

To show that * is associative we need to show 

(a*b)*c = a*(b*c) 

Or ||a - b| - c| = |a - |b - c|| 

Let us consider c>a>b 

Eg a = 1,b = - 1,c = 5 

LHS: 

|a - b| = |1 + 1| = 2 

||a - b| - c| = |2 - 5| = 3 

RHS 

|b - c| = | - 1 - 5| = 6 

|a - |b - c|| = |1 - 6| = | - 5| = 5 

As LHS is not equal to RHS * is not associative



Discussion

No Comment Found

Related InterviewSolutions