InterviewSolution
Saved Bookmarks
| 1. |
For all `n in N, 2^(4n)-15n-1` is divisible byA. 125B. 225C. 450D. None of these |
|
Answer» Correct Answer - B Let `P(n) : 2^(4n) - 15 n - 1` Put n = 2 `P(2)=2^(8)-30-1=225` which is divisible by 225. Let us assume, P(n) is true for n = k is P(K) : `2^(4k)-15k-1` is divisible by 225. `rArr 2^(4k)-15k-1=225 lambda, lambda in R, k in N" "...(i)` To prove for n = k + 1 Consider `2^(4k+4)-15k-15-1=2^(4k).2^(4)-15k-16` `=2^(4)[225 lambda + 1 + 15k]-15k-16" "("from (i)")` `=2^(4).225 lambda .2^(4)+15.2^(4).k-15k-16` `=25.225 lambda + 225 k` `=225[2^(4) lambda + k]` = 225 r where `r = 2^(4)lambda + k` is a constant Hence, `2^(4n)-15n - 1` is divisible by 225. |
|