1.

For all permissible values of A,2A, following holds true.(i)cotA+tanA=1sinAcosA=2cosec 2A(ii)cotA−tanA=cos2A−sin2AsinAcosA=2cot2A(iii)2cotA=2(cosec 2A+cot2A) ⇒cosec 2A+cot2A=cotAAlso to evaluate a series of form f(x)+f(2x)+f(4x)+⋯+f(2nx) when f(x) can be expressed as g(x)−g(2x), we can use the following technique,f(x)+f(2x)+f(4x)+⋯+f(2nx)=(g(x)−g(2x))+(g(2x)−g(4x))+⋯(g(2nx)−g(2n+1x))=g(x)−g(2n+1x)Based on the above information, solve the following questions for all permissible values of x.The value of cot3712∘ is

Answer»

For all permissible values of A,2A, following holds true.

(i)cotA+tanA=1sinAcosA=2cosec 2A(ii)cotAtanA=cos2Asin2AsinAcosA=2cot2A(iii)2cotA=2(cosec 2A+cot2A) cosec 2A+cot2A=cotA



Also to evaluate a series of form f(x)+f(2x)+f(4x)++f(2nx) when f(x) can be expressed as g(x)g(2x), we can use the following technique,

f(x)+f(2x)+f(4x)++f(2nx)=(g(x)g(2x))+(g(2x)g(4x))+(g(2nx)g(2n+1x))=g(x)g(2n+1x)



Based on the above information, solve the following questions for all permissible values of x.



The value of cot3712 is



Discussion

No Comment Found