InterviewSolution
Saved Bookmarks
| 1. |
For an electrode reaction written as `M^(n+)+n e^(-)rarr M` , `E_("red")=E_("red")^(@)-(RT)/(nf)ln(1)/([M^(n+)])` `=E_("red")^(@)-(0.059)/(n)"llog"(1)/([M^(n+)])` at 298 k For the cell reaction `aA+bB rarr xX+yY` `rArr E_("cell")=E_("cell")^(@)-(RT)/(nf)"log"([X]^(x)[Y]^(y))/([A]^(a)[B]^(b))` For pure solids, liquids or gases at lampt. molarconc = 1 Std. free energy change `Delta G^(@)=-nfE^(@)` where f - for faraday = 96,500 c, n = no. of `e^(-)` `Delta G=-2.303 RT log K_(c )` where `K_(c )` is equilibrium constant `K_(c )` can be calculated by using `E^(@)` of cell. `E^(@)` for the cell, `Zn//Zn_((aq))^(2+)//Cu_((aq))^(2+)//Cu` is `1.10 v` at `25^(@)c`. The equilibrium constant for the cell reactoin. `Zn+Cu_((aq))^(2+) hArr Cu+Zn_((aq))^(2+)` is the order ofA. `10^(-37)`B. `10^(37)`C. `10^(-17)`D. `10^(17)` |
|
Answer» Correct Answer - B (b) `E_("cell")^(@)=(0.059)/(2)log K : log K =(1.10xx2)/(0.059)` `K=1.9xx10^(37)` |
|