| 1. |
For any Δ ABC show that (c2 – a2 + b2)tan A = (a2 – b2 + c2)tan B = (b2 – c2 + a2)tan C |
|
Answer» Let us consider the LHS (c2 – a2 + b2), (a2 – b2 + c2), (b2 – c2 + a2) As we know sine rule in Δ ABC a/sin A = b/sin B = c/sin C Now, as LHS contain (c2 – a2 + b2), (a2 – b2 + c2) and (b2 – c2 + a2), which can be obtained from cosine formulae. From the cosine formula we have: Cos A = (b2 + c2 – a2)/2bc 2bc cos A = (b2 + c2 – a2) Now, let us multiply both the sides by tan A we get, 2bc cos A tan A = (b2 + c2 – a2)tan A 2bc cos A (sin A/cos A) = (b2 + c2 – a2)tan A 2bc sin A = (b2 + c2 – a2)tan A … (i) Cos B = (a2 + c2 – b2)/2ac 2ac cos B = (a2 + c2 – b2) Now, let us multiply both the sides by tan B we get, 2ac cos B tan B = (a2 + c2 – b2)tan B 2ac cos B (sin B/cos B) = (a2 + c2 – b2)tan B 2ac sin B = (a2 + c2 – b2)tan B … (ii) Cos C = (a2 + b2 – c2)/2ab 2ab cos C = (a2 + b2 – c2) Then, let us multiply both the sides by tan C we get, 2ab cos C tan C = (a2 + b2 – c2)tan C 2ab cos C (sin C/cos C) = (a2 + b2 – c2)tan C 2ab sin C = (a2 + b2 – c2)tan C … (iii) Now, as we are observing that sin terms are being involved therefore let’s use sine formula. From the sine formula we have, a/sin A = b/sin B = c/sin C sin A/a = sin B/b = sin C/c Then, let us multiply abc to each of the expression we get, abc sin A/a = abc sin B/b = abc sin C/c bc sin A = ac sin B = ab sin C 2bc sin A = 2ac sin B = 2ab sin C ∴ From the equation (i), (ii) and (iii) we have, (c2 – a2 + b2)tan A = (a2 – b2 + c2)tan B = (b2 – c2 + a2)tan C Thus proved. |
|