

InterviewSolution
1. |
For any positive integer n, prove that n3 – n divisible by 6. |
Answer» Let, n be any positive integer. And since any positive integer can be of the form 6q, or 6q+1, or 6q+2, or 6q+3, or 6q+4, or 6q+5. (From Euclid’s division lemma for b= 6) We have n3 – n = n(n2-1)= (n-1)n(n+1), For n= 6q, ⇒ (n-1)n(n+1)= (6q-1)(6q)(6q+1) ⇒ (n-1)n(n+1)= 6[(6q-1)q(6q+1)] ⇒ (n-1)n(n+1)= 6m, which is divisible by 6. [m= (6q-1)q(6q+1)] For n= 6q+1, ⇒ (n-1)n(n+1)= (6q)(6q+1)(6q+2) ⇒ (n-1)n(n+1)= 6[q(6q+1)(6q+2)] ⇒ (n-1)n(n+1)= 6m, which is divisible by 6. [m= q(6q+1)(6q+2)] For n= 6q+2, ⇒ (n-1)n(n+1)= (6q+1)(6q+2)(6q+3) ⇒ (n-1)n(n+1)= 6[(6q+1)(3q+1)(2q+1)] ⇒ (n-1)n(n+1)= 6m, which is divisible by 6. [m= (6q+1)(3q+1)(2q+1)] For n= 6q+3, ⇒ (n-1)n(n+1)= (6q+2)(6q+3)(6q+4) ⇒ (n-1)n(n+1)= 6[(3q+1)(2q+1)(6q+4)] ⇒ (n-1)n(n+1)= 6m, which is divisible by 6. [m= (3q+1)(2q+1)(6q+4)] For n= 6q+4, ⇒ (n-1)n(n+1)= (6q+3)(6q+4)(6q+5) ⇒ (n-1)n(n+1)= 6[(2q+1)(3q+2)(6q+5)] ⇒ (n-1)n(n+1)= 6m, which is divisible by 6. [m= (2q+1)(3q+2)(6q+5)] For n= 6q+5, ⇒ (n-1)n(n+1)= (6q+4)(6q+5)(6q+6) ⇒ (n-1)n(n+1)= 6[(6q+4)(6q+5)(q+1)] ⇒ (n-1)n(n+1)= 6m, which is divisible by 6. [m= (6q+4)(6q+5)(q+1)] Hence, for any positive integer n, n3 – n is divisible by 6. |
|