1.

Show that \(\frac{1}{\sqrt2}\) is an irrational number.

Answer»

Let’s assume on the contrary that \(\frac{1}{\sqrt2}\) is a rational number. Then, there exist positive integers a and b such that 

\(\frac{1}{\sqrt2}\) = \(\frac{a}{b}\) where, a and b, are co-primes 

⇒ (\(\frac{1}{\sqrt2}\))2 = (\(\frac{a}{b}\))2 

\(\frac{1}{2}\) = \(\frac{a^2}{b^2}\) 

⇒ 2a2 = b2 

⇒ 2 | b2 [∵ 2|2b2 and 2a2 = b2] 

⇒ 2 | b ………… (ii) 

⇒ b = 2c for some integer c. 

⇒ b2 = 4c2 

⇒ 2a2 = 4c2 [∵ b2 = 2a2] 

⇒ a2 = 2c2 

⇒ 2 | a2 ⇒ 2 | a ……… (i) 

From (i) and (ii), we can infer that 2 is a common factor of a and b. But, this contradicts the fact that a and b are co-primes. So, our assumption is incorrect. 

Hence, \(\frac{1}{\sqrt2}\) is an irrational number.



Discussion

No Comment Found