InterviewSolution
Saved Bookmarks
| 1. |
For atoms of light and heavy hydrogen `(H and D)` fine the difference, (a) between the binding energies of their electrons in the ground state. (b) between the wavelength of first lines of the Lyman series. |
|
Answer» The difference between the binding energies is `DeltaE_(b)=E_(b)(D)-E_(b)(H)` `=Delta(m)/(1+(m)/(M))(e^(4))/(2 ħ^(2))+(m)/(1+(m)/(2M))(e^(4))/(2 ħ^(2))` `=(me^(4))/(2 ħ^(2))((m)/(2M))` Substitution gives `Delta E_(b)= 3.7 meV` For the first line the Lyman series `(2pi ħC)/(lambda)= ħR((1)/(4)-(1)/(4))=(3)/(4) ħR` or `lambda=(8pi c)/(3R)=(8pi c)/(3R)=(8 pi ħc)/(3E_(b))` Hence `DeltaE_(b)=E_(b)(D)-E_(b)(H)` `=Delta(m)/(1+(m)/(M))(e^(4))/(2 ħ^(2))+(m)/(1+(m)/(2M))(e^(4))/(2 ħ^(2))` `=(me^(4))/(2 ħ^(2))((m)/(2M))` Substitution gives `Delta E_(b)= 3.7 meV` For the first line the Lyman series `(2pi ħC)/(lambda)= ħR((1)/(4)-(1)/(4))=(3)/(4) ħR` or `lambda=(8pi c)/(3R)=(8pi c)/(3R)=(8 pi ħc)/(3E_(b))` Hence `lambda_(H)-lambda_(D)=(8 pi ħc)/(3)((1)/(E_(b)(H))-(1)/(E_(b)(D)))` `=(8pi ħc)/(3((me^(4))/(2 ħ^(2)))).(m)/(2M)` `=(m)/(2M)xxlambda_(1)` (where `lambda_(1)` is the wavelength of the first line of Lyman series without considering nuclear motion). Substitution gives (see.21 for `lambda_(1)`) using `lambda_(1)= 121nm` `Delta lambda=33p m` |
|