InterviewSolution
Saved Bookmarks
| 1. |
For `r= 0, 1,.....,10`, let `A_r,B_r, and C_r`denote, respectively, the coefficient of `x^r` in the expansions of `(1 +x)^10,(+x)^20 and (1+ x)^30`.Then `sum_(r=1)^10 A_r(B_10B_r-C_10A_r)` is equal toA. `B_(10 - C_(10)`B. `A_(10)(B_(10)^(2) - C_(10)A_(10))`C. 0D. `C_(10)- B_(10)` |
|
Answer» Correct Answer - d We have, `A_(r) = ""^(10)C_(r), B_(r) = ""^(20)C_(r) and C_(r) = ""^(30)C_(r)` `because sum _(r=1)^(10) A_(r) (B_(10)B_(r)- C_(10)A_(r))` `= B_(10) sum_(r=1)^(10) A_(r) B_(r) - C_(10) sum_(r=1)^(10) (A_(r))^(2)` `= B_(10)(sum_(r=1)^(10) ""^(10)C_(r) ""^(20)C_(r)) - C_(10) sum_(r=1)^(10) (""^(10)C_(r))^(2)` `= B_(10)(sum_(r=1)^(10) ""^(10)C_(r) ""^(20)C_(20-r)) - C_(10) {sum_(r=1)^(10) (""^(10)C_(r))^(2) -1}` `= B_(10){sum_(r=1)^(10) ""^(10)C_(r) ""^(20)C_(20-r)-1} - C_(10) {sum_(r=1)^(10) (""^(10)C_(r))^(2) -1}` ` b_(10)XX` {Coefficient of `x^(20)` in `(1 + x )^(10) (x + 1) ^(20) -1} - C_(10) {""^(20)C_(10 -1)}` `B_(10)xx {""^(30) C_(20) -1} - C_(10) {""^(20)C_(10) -1}` `B_(10){ ""^(30)C_(10) -1} - C_(10) {""^(20)C_(10) -1} ` `B_(10) (C_(10) -1} - C_(10) { ""^(20) C_(10) -1}`. |
|