InterviewSolution
Saved Bookmarks
| 1. |
In the expansion of `(5^(1//2)+7^(1//8))^(1024),`the number of integral terms is`128`b. `129`c. `130`d. `131`A. 128B. 129C. 130D. 131 |
|
Answer» Correct Answer - b The general term `T_(r + 1)` in the expansion of `(5^(1//2) + 7^(1//8)) ^(1024)` is given by `T_(r+ 1) = ""^(1024)C_(r) (5^(1//2))^(1024 - r)(7 ^(1//8))^(r)` `rArr T_(r + 1) = ""^(1024)C_(r) 5 ^(512 - r//2) 7^(r//8)` `rArr T_(r +1) = (1024C_(r) 5^(512 - r)) (5 ^(r//2) 7^(r//8))` `rArr T_(r+ 1) = { ""^(1024)C_(r) 5^(512 - r)} (5^(4) xx 7 )^(7)^(r //8)` Clearly, `T_(r +1)` will be an integer , iff ` r//8` is an integer such that 0 `le r le 1024` `rArr r` is a multiple of 8 lying satisfying ` 0 le r le 1024` `rArr ` r = 0 , 8 , 16 ..., 1024 `rArr ` r can assume 129 values Hence, these are 129 integral terms in the expansions of `(5^(1//2) + 7 ^(1//8))^(1024)` |
|