1.

For the hyperbola `x^2/ cos^2 alpha - y^2 /sin^2 alpha = 1;(0 lt alphalt pi/4)`A. EccentricityB. Abscissa of fociC. DirectrixD. Vertex

Answer» Correct Answer - B
`e^(2)=1+(b^(2))/(a^(2))=1+(sin^(2)alpha)/(cos^(2)alpha)=(1)/(cos^(2)alpha)`
`a^(2)=cos^(2)alpha`
`therefore" "a^(2)e^(2)=1`
Hence, the foci are `(pmae, 0)-=(pm1,0)`, which are independent of `alpha.`


Discussion

No Comment Found

Related InterviewSolutions