

InterviewSolution
Saved Bookmarks
1. |
For the matrix `A= [[3,2],[1,1]]`, find the numbers a and b such that `A^2+aA+bI=0.` |
Answer» `A = [[3,2],[1,1]]` `:. A^2 = [[3,2],[1,1]] [[3,2],[1,1]] = [[9+2,6+2],[3+1,2+1]] = [[11,8],[4,3]]` `aA = a [[3,2],[1,1]] = [[3a,2a],[a,a]]` `bI = b[[1,0],[0,1]] = [[b,0],[0,b]]` `:. A^2-aA+bI = [[11,8],[4,3]]+[[3a,2a],[a,a]]+ [[b,0],[0,b]] ` It is given that `A^2-aA+bI = 0` `:. [[11,8],[4,3]]+[[3a,2a],[a,a]]+ [[b,0],[0,b]] = [[0,0],[0,0]]` `=>11+3a+b = 0 => 3a+b = -11->(1)` `=>3+a+b = 0 => a = -b - 3` Putting this value of `a` in (1), `3(-b-3)+b = -11` `=> - 3b -9 +b = -11` `=>-2b = -2 => b = 1` `:. a = -1-3 = -4` `:. a = -4 and b = 1` |
|