Saved Bookmarks
| 1. |
For two distinct positive numbers (a) \(x+y> 2\sqrt{xy}\)(b) \(\cfrac{x+y}{2}>xy\)(c) \(\sqrt{xy}> \cfrac{x+y}{2}\)(d) \(\cfrac{2xy}{x+y}> \sqrt{xy}\) |
|
Answer» Correct answer is: (a) \(x+y> 2\sqrt{xy}\) For distinct x, y > 0; AM > GM ⟹ \(\cfrac{x+y}{2}\) > \(\sqrt{xy}\) ⇒ x +y > 2\(\sqrt{xy}\) |
|