1.

For two distinct positive numbers  (a) \(x+y> 2\sqrt{xy}\)(b) \(\cfrac{x+y}{2}>xy\)(c) \(\sqrt{xy}> \cfrac{x+y}{2}\)(d) \(\cfrac{2xy}{x+y}> \sqrt{xy}\)

Answer»

Correct answer is:  (a) \(x+y> 2\sqrt{xy}\)

For distinct x, y > 0;

AM > GM

⟹ \(\cfrac{x+y}{2}\) > \(\sqrt{xy}\)

⇒ x +y > 2\(\sqrt{xy}\)



Discussion

No Comment Found

Related InterviewSolutions