InterviewSolution
| 1. |
For what value of x and y are the following matrices equal?\(A=\begin{bmatrix}2x+1& 2y \\[0.3em]0 & y^2-2y \\[0.3em]\end{bmatrix},\)\(B=\begin{bmatrix}x+3& y^2+2 \\[0.3em]0 & -6 \\[0.3em]\end{bmatrix}\) |
|
Answer» Given two matrices are equal. i.e, A = B. \(\begin{bmatrix}2x+1& 2y \\[0.3em]0 & y^2-2y \\[0.3em]\end{bmatrix}\)\(=\begin{bmatrix}x+3& y^2+2 \\[0.3em]0 & -6 \\[0.3em]\end{bmatrix}\) We know that if two matrices are equal, then the elements of each matrices are also equal. ∴2x + 1 = x + 3 ⇒2x – x = 3 – 1 ⇒x = 2 …(1) And 2y = y2 + 2 ⇒ y2 – 2y + 2 = 0 ⇒ y = \(\frac{-2±\sqrt{4-8}}{2}\) ⇒ y = \(\frac{-2±2i}{2}\) ⇒ y = \(\frac{2(-1±i)}{2}\) ⇒ y = -1 ± i (No real solutions) … (2) And y2 – 5y = – 6 ⇒ y2 – 5y + 6 = 0 ⇒ y2 – 3y – 2y + 6 = 0 ⇒ y(y – 3) – 2(y – 3) = 0 ⇒ (y – 3)(y – 2) = 0 ⇒ y = 3 or 2 … (3) ∴From the above equations we can say that A and B can’t be equal for any value of y. |
|