1.

For what value of x and y are the following matrices equal?\(A=\begin{bmatrix}2x+1& 2y \\[0.3em]0 & y^2-2y \\[0.3em]\end{bmatrix},​​\)\(B=\begin{bmatrix}x+3& y^2+2 \\[0.3em]0 & -6 \\[0.3em]\end{bmatrix}​​\)

Answer»

Given two matrices are equal.

i.e, A = B.

 \(\begin{bmatrix}2x+1& 2y \\[0.3em]0 & y^2-2y \\[0.3em]\end{bmatrix}​​\)\(=\begin{bmatrix}x+3& y^2+2 \\[0.3em]0 & -6 \\[0.3em]\end{bmatrix}​​\) 

We know that if two matrices are equal, then the elements of each matrices are also equal.

∴2x + 1 = x + 3 

⇒2x – x = 3 – 1 

⇒x = 2  …(1)

And 2y = y2 + 2 

⇒ y2 – 2y + 2 = 0

⇒ y = \(\frac{-2±\sqrt{4-8}}{2}\)

⇒ y =  \(\frac{-2±2i}{2}\)

⇒ y =  \(\frac{2(-1±i)}{2}\) 

⇒ y =  -1 ± i

(No real solutions) … (2)

And y2 – 5y = – 6 

⇒ y2 – 5y + 6 = 0 

⇒ y2 – 3y – 2y + 6 = 0

⇒ y(y – 3) – 2(y – 3) = 0 

⇒ (y – 3)(y – 2) = 0 

⇒ y = 3 

or 2  … (3)

∴From the above equations we can say that A and B can’t be equal for any value of y.



Discussion

No Comment Found

Related InterviewSolutions