1.

For which value (s) of `lambda`, do the pair of linear equations `lambdax + y = lambda^(2)` and `x + lambda y = 1 ` have (i) no solution ? (ii) infinitely many solutions ? (iii) a unique solution ?

Answer» The given pair of linear equations is
`lambdax + y = lambda^(2)` and `x + lambda y = 1`
Here, `" " a_(1) = lambda, b_(1) = 1, c_(1) = - lambda^(2)`
`a_(2) = 1, b_(2) = lambda, c_(2) = -1`
(i) For no solution,
`(a_(1))/(a_(2)) = (b_(1))/(b_(2)) != (c_(1))/(c_(2))`
`rArr " " (lambda)/(1) = (1)/(lambda) != (-lambda^(2))/(-1)`
`rArr " " lambda^(2) - 1 = 0`
`rArr " " (lambda - 1) (lambda + 1) = 0`
`rArr " " lambda = 1, -1`
Here, we take only `lambda = -1` because at `lambda = 1` the system of linear equations has infinitely many solutions.
(ii) For infinitely many solutions,
`(a_(1))/(a_(2)) = (b_(1))/(b_(2)) = (c_(1))/(c_(2))`
`rArr " " (lambda)/(1) = (1)/(lambda) = (lambda^(2))/(1)`
`rArr " " (lambda)/(1) = (lambda^(2))/(1)`
`rArr " " lambda (lambda - 1) = 0`
when `lambda != 0, ` then ` lambda = 1`
For a unique solution,
` (a_(1))/(a_(2))!=(b_(1))/(b_(2)) rArr (lambda)/(1) != (1)/(lambda)`
`rArr " " lambda^(2) != 1 rArr lambda != +- 1`
So, all real values of `lambda ` except `+-1`.


Discussion

No Comment Found

Related InterviewSolutions