1.

For x > 0, Let A=⎡⎢⎣x+1x000x00016⎤⎥⎦B=⎡⎢⎢⎢⎣5xx2+10003x00014⎤⎥⎥⎥⎦ X=(AB)−1+(AB)−2+(AB)−3+...∞ Z=X−1−2I (I is identity matrix of order 3) (P) minimum value of [Tr(Ax)]is(1)24(when [.])→represent integer function(Q) det(X−1) is(2)12(R) If Tr(z+z2+−−−+z10)=2a+b,(a,b∈N)then a + b is (3)6(S) If value of |adj(√5X−1)|=kthen number of positive divisors(4)19of k which are odd is

Answer»

For x > 0, Let A=x+1x000x00016B=

5xx2+10003x00014


X=(AB)1+(AB)2+(AB)3+...
Z=X12I (I is identity matrix of order 3)
(P) minimum value of [Tr(Ax)]is(1)24(when [.])represent integer function(Q) det(X1) is(2)12(R) If Tr(z+z2++z10)=2a+b,(a,bN)then a + b is (3)6(S) If value of |adj(5X1)|=kthen number of positive divisors(4)19of k which are odd is



Discussion

No Comment Found