InterviewSolution
| 1. |
For \(x \in \left( { - \frac{{3\pi }}{2},\frac{\pi }{2}} \right)\), the expression \({\cot ^{ - 1}}\left( {\frac{{1 - \sin x}}{{\cos x}}} \right)\) can be simplified as:1. \(\frac{\pi }{4} + \frac{x}{2}\)2. \(\frac{\pi }{4} - \frac{x}{2}\)3. tan x4. tan (-x) |
|
Answer» Correct Answer - Option 1 : \(\frac{\pi }{4} + \frac{x}{2}\) Concept:
Calculation: The expression \({\cot ^{ - 1}}\left( {\frac{{1 - \sin x}}{{\cos x}}} \right)\) can be written as follows: \({\cot ^{ - 1}}\left( {\frac{{1 - \sin x}}{{\cos x}}} \right) = {\cot ^{ - 1}}\left( {\frac{{{{\cos }^2}\left( {x/2} \right) + {{\sin }^2}\left( {x/2} \right) - 2\sin \left( {x/2} \right)\cos \left( {x/2} \right)}}{{{{\cos }^2}\left( {x/2} \right) - {{\sin }^2}\left( {x/2} \right)}}} \right)\) \( = {\cot ^{ - 1}}\left( {\frac{{{{\left( {\cos \left( {x/2} \right) - \sin \left( {x/2} \right)} \right)}^2}}}{{\left( {\cos \left( {x/2} \right) - \sin \left( {x/2} \right)} \right)\left( {\cos \left( {x/2} \right) + \sin \left( {x/2} \right)} \right)}}} \right)\) \(= {\cot ^{ - 1}}\left( {\frac{{\left( {\cos \left( {x/2} \right) - \sin \left( {x/2} \right)} \right)}}{{\left( {\cos \left( {x/2} \right) + \sin \left( {x/2} \right)} \right)}}} \right)\) Dividing the numerator and denominator of RHS by sin(x/2) , we get \({\cot ^{ - 1}}\left( {\frac{{1 - \sin x}}{{\cos x}}} \right) = {\cot ^{ - 1}}\left( {\frac{{\left( {cot(\frac{x}{2})\ cot \frac{\pi}{4} - \ 1} \right)}}{{\left( {cot(\frac{\pi}{4} + \cot \left( {\frac{x}{2}} \right)} \right)}}} \right)\) As we know that, \(\cot \left( {x + y} \right) = \frac{{\cot x\cot y - 1}}{{\cot y + \cot x}}\) \(= {\cot ^{ - 1}}\left( {\cot \left( {\frac{\pi }{4} + \frac{x}{2}} \right)} \right)\) \(= \frac{\pi }{4} + \frac{x}{2}\) |
|