InterviewSolution
| 1. |
\(\frac{{sin\theta }}{{1 + cos\theta }}\; + \;\frac{{1 + cos\theta }}{{sin\theta }} = \frac{4}{{\sqrt 3 }}\); 0°<θ < 90°, then find the value of (secθ + cotθ + cosecθ)- 11. (2 -√3)2. (2 +√3)3. (√3 - 2)4. (√2 +√3) |
|
Answer» Correct Answer - Option 1 : (2 -√3) Given - \(\frac{{sinθ }}{{1 + cosθ }}\; + \;\frac{{1 + cosθ }}{{sinθ }} = \frac{4}{{√ 3 }}\) Concept used - sin2θ + cos2θ = 1 sinθ× sinθ = (1 - cos2θ) sinθ× sinθ = (1 + cosθ)× (1 - cosθ) {sinθ/(1 + cosθ)} ={(1 - cosθ)/sinθ} Solution - \(\frac{{sinθ }}{{1 + cosθ }}\; + \;\frac{{1 + cosθ }}{{sinθ }} = \frac{4}{{√ 3 }}\) \(⇒ \frac{{sinθ \: \times (1 - cosθ) }}{{(1 + cosθ)(1 -\ cosθ) }}\; + \;\frac{{1 + cosθ }}{{sinθ }} = \frac{4}{{√ 3 }}\) ⇒ Sinθ(1 - cosθ)/1 - cos2θ + (1 + cosθ)/sinθ= 4/√3 ⇒ Sinθ (1 - cosθ)/sin2θ +(1 + cosθ)/sinθ= 4/√3 \(⇒ \frac{{(1 - cosθ) }}{{sinθ }}\; + \;\frac{{1 + cosθ }}{{sinθ }} = \frac{4}{{√ 3 }}\) ⇒ (2/sinθ) = (4/√3) ⇒ sinθ = (√3/2) = sin60° ⇒θ = 60° ⇒(secθ + cotθ + cosecθ)- 1 ⇒ (sec60° + cot60° + cosec60°)- 1 ⇒ {2 + (1/√3) + (2/√3)}- 1 ⇒ (2 +√3)- 1 ⇒ 1/(2 +√3) ⇒ ( 2 -√3) ∴ Ans = (2 -√3). |
|