1.

\frac { \sin \theta \sin 2 \theta + \sin 3 \theta \sin 60 } { \sin \theta \cos 2 \theta + \sin 3 \theta \cos 60 } = \tan 5 \theta

Answer»

We will use the following formulae in this solution--

(1) Sin A . Sin B = (1/2) [ Cos (A-B) - Cos (A+B) ](2) Sin A Cos B = (1/2) [ Sin (A+B) + Sin (A-B) ] (3) Sin A + Sin B = 2 Sin (1/2) (A+B) . Cos (1/2)(A-B) (4) Sin A - Cos B = 2 Sin (1/2) (A-B) . Cos (1/2)(A+B) (5) Sin ( -x ) = - Sin x (6) Cos ( - x ) = Cos x

Solution --

Numerator = (1/2) [ 2 SinA Sin 2A + 2 Sin 3A. Sin 6A ] --- Use formula (1)

=> (1/2) [ Cos (A-2A) - Cos (A+2A) + Cos (3A-6A) - Cos (3A+6A) ]

=> (1/2) [ Cos A - Cos 3A + Cos 3A - Cos 9A ]

=> (1/2) [ Cos A - Cos 9A ] .... Again use formula (1)

=> Sin 5A . Sin 4A

Denominator

= Sin A Cos 2A + Sin 3A.Cos 6A

=> (1/2) [ Sin (A+2A) + Sin (A-2A) + Sin ( 3A + 6A ) + Sin ( 3A - 6A ) ]

=> (1/2) [ Sin 3A - Sin A + Sin 9A - Sin 3A ]

=> (1/2) [ Sin 9A - Sin A ]

=> (1/2) [ 2 Cos 5A . Sin 4A ]

=> Cos 5A . Sin 4A

Hence the Left Hand Side of the given identity

= Numerator / Denominator

=> Sin 5A . Sin 4A / Cos 5A . Sin 4A

=> Tan 5A = RHS ………………. QED .

I HOPE IT HELPS U.



Discussion

No Comment Found