1.

From a rectangle ABCD of area 812 cm2, a semicircular part with diameter CD and area 98π cm2  are removed, find the perimeter of the remaining figure.1. 125 cm2. 135 cm3. 130 cm4. 164 cm

Answer» Correct Answer - Option 3 : 130 cm

Given - 

area of rectangle = 812 cm2, area of semicircle = 98π cm2

Formula used - 

area of rectangle = length × breadth

area of semicircle = (1/2) × π × radius2

Solution - 

Let the radius of the semi - circle is r cm.

⇒ (1/2) × π r2 = 98π  

⇒ r2 = 196

⇒ r = 14 cm

⇒ diameter of the semi - circle = 28 cm

⇒ diameter of semi - circle = side of rectangle CD = 28 cm

⇒ area of rectangle = 812 cm2

⇒ BC × CD = 812

⇒ BC × 28 = 812

⇒ BC = 29 cm

⇒ We have to find perimeter of remaining figure so,

⇒ perimeter = AB + BC + AD + (1/2) × perimeter of the circle

⇒ perimeter = 28 + 29 + 29 + (1/2) × (2πr)

⇒ perimeter = 58 + 28 + (22/7) × 14

⇒ perimeter = 130 cm

∴ perimeter of remaining figure = 130 cm.



Discussion

No Comment Found

Related InterviewSolutions