1.

Give the theory of interference of light by considering waves of equal amplitude and hence arrive at the conditions for constructive and destructive interference in terms of path difference.

Answer»

Solution :Theory of interference :
Consider TWO harmonic light waves of same amplitude. Let `phi` be the constant phase difference between them. The displacement of these waves can be represented as.
`y_1 =a cos omega t""rarr(1)`
`y_2 = a cos (omega t+ phi)""rarr(2)`
According superposition principle
`y=y_1 +y_2`
`y= a cos omega t + a cos (omega t+phi)`
`y = [cos omega t + cos (omega t +phi )]`
We know that
`cos C+cos D=2cos((C+D)/(2))cos((C-D)/(2))`
So, `y=a[2cos((omega t+omega t+phi)/(2))cos((omega t-omega t-phi)/(2))]`
`y=2a cos(omega t+phi/2)cos(- phi/2)`
`y=[2acos(phi/2)]cos(omega t+phi/2)`
`y=A cos(omega t+phi/2)`
Where `A = 2a cos(phi/2)` called amplitude of resultant wave.
So intensity of resultant wave, `I = A^2 = 4a^2 cos^2(phi/2)`
Condition for constructive interference
For MAXIMUM intensity `cos^2(phi/2) =+-1`
`cos(phi/2)=+-1=cos(2n pi)`
where `n=0,1,2,3,....,phi = 0, +- 2pi, +- 4pi, +-6pi.....`
`:.` Path difference `delta=n lambda`
`delta=0,lambda,2lambda,3lambda,......`
Condition for destructive interference
For MINIMUM intensity `cos(phi/2)=0`
so, `phi = +-pi,+-3PI,+-5PI......`
`:.` Path difference `delta= (2n+1) (lambda)/(2)`
`delta = (lambda)/(2), (3lambda)/(2), (5lambda)/(2) ....`


Discussion

No Comment Found

Related InterviewSolutions