1.

Given Rydberg constant as 1.097 × 10-7 m . Find the longest and shortest wavelength limit of Baler Series.

Answer»

\(\bar v=\frac{1}{λ}= R_H\Big[\frac{1}{n^2_1}-\frac{1}{n_2^2}\Big]\)

Longest wavelength n1 = 2 and n2 = 3

\(=\frac{1}{λ}= R_H\Big[\frac{1}{n^2_1}-\frac{1}{n_2^2}\Big]\) \(R_H\Big[\frac{1}{2^2}-\frac{1}{3^2}\Big]\)

λ = \(\frac{1}{R_H\Big[\frac{1}{2^2}-\frac{1}{3^3}\Big]}\) = 6563 A0

Shortest Wavelength n1 = 2 and n2 = α

\(=\frac{1}{λ}= R_H\Big[\frac{1}{n^2_1}-\frac{1}{n_2^2}\Big]\) = \(R_H\Big[\frac{1}{2^2}-\frac{1}{\alpha^2}\Big]\)

λ =\(\frac{1}{R_H\Big[\frac{1}{2^2}-\frac{1}{\alpha^2}\Big]}\) = \(\frac{1}{1.097\times10^7\Big(\frac{1}{4}\Big)}\)

= 3646 A0



Discussion

No Comment Found