InterviewSolution
Saved Bookmarks
| 1. |
Given that `alpha`, `gamma` are roots of the equation `Ax^(2)-4x+1=0` and `beta`, `delta` are roots of the equation `Bx^(2)-6x+1=0`. If `alpha`, `beta`,`gamma` and `delta` are in `H.P.`, thenA. `A=5`B. `A=3`C. `B=8`D. `B=-8` |
|
Answer» Correct Answer - B::C `(b,c)` `alpha,beta,gamma,delta` are in `H.P.` `implies(1)/(alpha)`, `(1)/(beta)`, `(1)/(gamma)`, `(1)/(delta)` are in `A.P.` Let `d` be the common difference of the `A.P.` Since `alpha`, `gamma` are roots of `Ax^(2)-4x+1=0` `:.(alpha+gamma)/(alphagamma)=(4//A)/(1//A)=4` or `(1)/(alpha)+(1)/(gamma)=4` `implies(1)/(alpha)+(1)/(alpha)+2d=4` or `(1)/(alpha)+d=2`.......`(i)` Also `beta`, `delta` are roots of `Bx^(2)-6x+1=0` `:.(beta+delta)/(betadelta)=(1)/(beta)+(1)/(delta)=(6//B)/(1//B)=6` or `(1)/(alpha)+d+(1)/(alpha)+3d=6` `implies(1)/(alpha)+2d=3`..........`(ii)` Solving `(i)` and `(ii)`, we get `(1)/(alpha)=1` and `d=1` `:. (1)/(alpha)=1`, `(1)/(beta)=2`, `(1)/(gamma)=3` and `(1)/(delta)=4` since `(1)/(alphagamma)=AimpliesA=3` Also, `(betagamma)=BimpliesB=8` |
|