InterviewSolution
Saved Bookmarks
| 1. |
Let `f(n)` denote the `n^(th)` terms of the seqence of `3,6,11,18,27,….` and `g(n)` denote the `n^(th)` terms of the seqence of `3,7,13,21,….` Let `F(n)` and `G(n)` denote the sum of `n` terms of the above sequences, respectively. Now answer the following: `lim_(ntooo)(F(n))/(G(n))=`A. `2`B. `1`C. `0`D. `oo` |
|
Answer» Correct Answer - B `(b)` `S=3+6+11+18+...+t_(n)` `S=3+6+11+...+t_(n-1)+t_(n)` `thereforeoverline(0=3+(3+5+7+9+...(n-1)"terms"-t_(n))` `:.t_(n)=n^(2)+2` Similarly `nth` terms of `g(n)=n^(n)+n+1` `:.lim_(ntooo)(n^(2)+2)/(n^(2)+n+1)=1` `F(n)=sum(n^(2)+2)` `=(n(n+1)(2n+1))/(6)+2n` `=(n(2n^(2)+3n+13))/(6)` `G(n)=sum(n^(2)+n+1)=(n(n^(2)+3n+5))/(3)` `:.lim_(nto oo)((n(2n^(2)+3n+13))/(6))/((n(n^(2)+3n+5))/(3))=1` |
|