1.

(i) IfC isa givennon-zeroscalarand overset(to)(A)" and" overset(to)(B) be givennon-zerovectorssuch thatoverset(to)(A) bot overset(to)(B) then findthevectorsoverset(to)(X) whichsatisfies theequationsoverset(to)(A) "."overset(to)(X) =c" and" overset(to)(A) xxoverset(to)(X)= overset(to)(B) (ii) overset(to)(A) vectors A hascomponents A_(1), A_(2) , A_(3) in a right -handedrectangular cartesiancoordinate system OXYZ. Thecoordinate systemis rotated about theX-axis through an anlge(pi)/(2) . Findthecomponentsof Ain thenewcoordinatesystemin termsof A_(1),A_(2),A_(3)

Answer»


Solution :(i) Given`vec(A) bot vec(B) rArrvec(A)". " vec(B)=0`
and `vec(A) xx vec(X) =vec(B) rArr vec(A) ". " vec(B) =0 " and " vec(X)". " vec(B)=0`
Now`[vec(X) vec(A) vec(A) xx vec(B)] = vec(X) ". " {vec(A) xx (vec(A) xx vec(B))}`
` =vec(X) .{(vec(A) ". " vec(B))vec(A)-(vec(A) ". " vec(B)) vec(B)}`
` = (vec(A) ". " vec(B))(vec(X) " ." vec(A)) - (vec(A) ". " vec(A)) (vec(X) " ." vec(B))=0`
`rArr vec(X) , vec(A) , vec(A)xx vec(B)` are coplanar
So `vec(X)` can berepresentedas alinearcombinationof `vec(A)" and"vec(A) xx vec(B)` , Letus consider, `vec(X) = lvec(A) + m (vec(A) xx vec(B))`
Since `vec(A)" . " vec(X) = c`
`:. vec(A) " ." {(vec(A) +m (vec(A)xx vec(B)) }=c`
` rArr l(vec(A) xx vec(A)) +m {vec(A) xx (vec(A) xx vec(B))}= vec(B)`
`rArr 0- m |vec(A)|^(2)vec(B) =vec(B)`
`rArrm = -(1)/(|vec(A)|^(2))`
`:. vec(X) =((C)/(|vec(A)|^(2)))vec(A) -((1)/(|vec(A)|^(2))) (vec(A) xx vec(B))`
(II) Sincevector`vec(A)`hascomponents `A_(1) , A_(2) , A_(3)` in thecoordinatesystemOXYZ
`:. vec(A)= A_(1) HAT(i)+A_(2) hat(j)+A_(3) hat(k)`
Whenthe givensystemis rotatedaboutan angleof `pi//2` the newX-axisis alongold Y-axisand newY-axisis alongthe oldnegativeX - axis, whereasz remainssame .
Hencethe componentsof A in thenew systemare
`(A_(2) , -A_(1), A_(3))`
`:. vec(A) ` becomes`(A_(2) hat(i)- A_(2)hat(j)+ A_(3) hat(k))`


Discussion

No Comment Found

Related InterviewSolutions