1.

If `0 le x le (pi)/(2)`, then the number of value of x for which `sin x - sin 2x + sin 3x = 0`, isA. 2B. 3C. 1D. 4

Answer» Correct Answer - A
We have , `sin x - sin 2x + sin 3x = 0`
`rArr 2 sin ((x + 3x)/(2)) cos((x-3x)/(2)) - sin 2x = 0`
`[because sin C + sin D = 2 sin((C+D)/(2)) cos ((C-D)/(2))]`
`rArr 2 sin 2x cos x - sin 2x = 0" "[because cos (-theta) = cos theat]`
`rArr sin 2x (2cos x-1)=0`
`rArr sin 2x=0 or 2 cos x - 1 =0`
`2x = 0, pi,......or cos x =(1)/(2)`
`rArr x = 0, (pi)/(2) ....or x =(pi)/(3)`
In the interval `[0,(pi)/(2))` only tow values satisfly , namely `x = 0` and ` = (pi)/(3)`.


Discussion

No Comment Found